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Abstract
The progress made in aging research using laboratory organisms is undeniable. Yet, 
with few exceptions, these studies are conducted in a limited number of isogenic 
strains. The path from laboratory discoveries to treatment in human populations is 
complicated by the reality of genetic variation in nature. To model the effect of genetic 
variation on the action of the drug rapamycin, here we use the growth of Drosophila 
melanogaster	larvae.	We	screened	140	lines	from	the	Drosophila Genetic References 
Panel	for	the	extent	of	developmental	delay	and	found	wide-	ranging	variation	in	their	
response, from lines whose development time is nearly doubled by rapamycin, to 
those that appear to be completely resistant. Sensitivity did not associate with any 
single genetic marker, nor with any gene. However, variation at the level of genetic 
pathways was associated with rapamycin sensitivity and might provide insight into 
sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong 
response of the metabolome to rapamycin, but only among the sensitive larvae. In 
particular, we found that rapamycin altered levels of amino acids in sensitive larvae, 
and in a direction strikingly similar to the metabolome response to nutrient depri-
vation. This work demonstrates the need to evaluate interventions across genetic 
backgrounds and highlights the potential of omic approaches to reveal biomarkers of 
drug efficacy and to shed light on mechanisms underlying sensitivity to interventions 
aimed at increasing lifespan.
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1  |  INTRODUC TION

Rapamycin and related inhibitors of the mechanistic target of 
rapamycin (mTOR) pathway are of great interest as potential inter-
ventions to extend organismal lifespan (Kaeberlein, 2017). Studies 
of diverse organisms, from yeast to mammals, suggest that de-
creased mTOR signaling can extend lifespan (Bjedov et al., 2010; 
Harrison et al., 2009; Kaeberlein et al., 2005). However, laboratory 
studies of rapamycin have focused almost exclusively on a hand-
ful of inbred laboratory strains. As such, little is known regard-
ing variation in the efficacy of rapamycin in natural populations. 
Studies in yeast (Schleit et al., 2013),	flies	(Jin	et	al.,	2020), worms 
(Onken et al., 2022), and mice (Liao et al., 2010) have pointed to 
a major role for genetic variation in shaping the response to aging 
interventions. Similarly, two studies have found that rapamycin's 
effect on Drosophila lifespan varies strongly by genotype (Bjedov 
et al., 2010; Rohde et al., 2021). However, these latter studies 
were relatively small in scale. Little is known about the full ex-
tent of variation in sensitivity to rapamycin, nor the underlying 
mechanisms for this variation. Given the interest in the potential 
of rapamycin to increase lifespan, it is critical that we understand 
the potential causes and consequences of variation in rapamycin 
sensitivity.

The emphasis on experimental work on a limited number of 
strains	 is	perhaps	not	 surprising,	 as	 lifespan	 studies	 are	 time-		 and	
labor-	intensive.	In	the	1990s,	researchers	found	that	at	least	in	some	
species, stress resistance could be used as a proxy for lifespan, sav-
ing	time	and	effort	(Lithgow	&	Walker,	2002). In the present work, 
we were interested in identifying genetic variation for response to 
rapamycin in the fruit fly, Drosophila melanogaster.	While	our	even-
tual goal is to identify variation in the lifespan response, here we 
turn our attention to development time, which can be slowed dra-
matically by rapamycin.

To explore the role of genetic background on response to rapa-
mycin, here we target larval growth. Numerous studies have used 
the growth of larvae to investigate mTOR function in Drosophila 
(Layalle et al., 2008; Oldham et al., 2000; Scott et al., 2004; Zhang 
et al., 2000). Larval development is delayed by a variety of manip-
ulations that reduce mTOR activity, including rapamycin and star-
vation (Oldham et al., 2000; Scott et al., 2004; Zhang et al., 2000). 
The mTOR pathway regulates larval growth, primarily through its 
effects on cell growth, but also influences a variety of other organ-
ismal processes in Drosophila including cell differentiation and de-
velopment, hematopoiesis, and behavior (Benmimoun et al., 2012; 
Wen	et	al.,	2017). This diversity of downstream targets provides the 
opportunity for a sensitive readout of mTOR function in response to 
rapamycin. Here we used delayed larval development time as a mea-
sure of rapamycin sensitivity. To model natural genetic variation, we 
used the Drosophila Genetic Reference Panel (DGRP), a population 
of	wild-	derived	inbred	lines	that	captures	substantial	genetic	varia-
tion (Huang et al., 2014).

We	 found	 remarkable	 genotypic	 variation	 in	 developmen-
tal delay in response to rapamycin across the DGRP, with some 

genotypes showing rapamycin sensitivity that exceeded com-
mon laboratory lines, and others that were completely resistant, 
showing no effect even at over 500 times the dose that we used 
for	screening.	We	found	weak	evidence	of	heritability	that	could	
be attributed to the single nucleotide polymorphism (SNP) gen-
otype data available for the DGRP, with estimates varying sub-
stantially	 in	 population	 subsamples.	 A	 genome-	wide	 association	
study	 (GWAS)	 failed	 to	 identify	 statistically	 significant	 associa-
tions between rapamycin sensitivity and any single genetic vari-
ant or gene. However, when we looked for larger sets of variants 
aggregated by biological pathway, we found associations between 
rapamycin sensitivity and pathways involved in morphology, de-
velopment, and cell signaling. To further explore the mechanisms 
by which genotype affects rapamycin sensitivity, we sampled 
groups of lines at the extremes of the phenotypic distribution, a 
design that treated rapamycin sensitivity as a dichotomous trait. 
Finally, we turned to metabolome profiling as a strategy to bridge 
the gap between genotype and phenotype for complex, polygenic 
traits (Harrison et al., 2020), asking whether metabolome profiles 
were associated with sensitivity using metabolomics.

In the absence of rapamycin, the metabolome of sensitive and 
resistant lines was indistinguishable. However, within sensitive lines, 
we observed strong and consistent effects of rapamycin on the me-
tabolome, effects that strikingly recapitulated those of starvation. 
This work demonstrates both extensive polygenic variation in rapa-
mycin sensitivity, while also showing that sensitive lines appear to 
converge on a common metabolome response. This work provides a 
strong rationale for the development of metabolomic biomarkers for 
rapamycin sensitivity.

2  |  RESULTS

2.1  |  Extensive natural genetic variation in 
sensitivity to rapamycin

Larval	 growth	 and	 the	 pace	 of	 development	 are	 mTOR-	dependent	
and	 rapamycin-	sensitive,	 and	 so	 we	 reason	 that	 the	 rate	 of	 larval	
development provides an organismal model to study sensitivity to 
rapamycin (Oldham et al., 2000; Zhang et al., 2000). To understand 
how natural genetic variation modifies the response to rapamycin, we 
measured time to pupation of Drosophila embryos that developed on 
food	containing	either	2 nmol	rapamycin	or	vehicle	control	(Section	4). 
We	did	so	among	140	lines	from	the	DGRP	and	two	standard	labora-
tory	strains	(W1118	and	Canton-	S)	(Figure 1a, Table S1). Across all lines 
tested, the average developmental delay, measured as the pupation 
time	 difference	 between	 rapamycin	 and	 control,	 was	 2.0 ± 1.6 days	
(SD),	representing	an	average	delay	of	21.3%.	We	found	wide	variation	
in development delay across the DGRP with some lines showing insig-
nificant delay, and others where mean development was delayed up to 
7.1 days	(69.1%)	(Figure 1a).	While	pupation	time	on	control	food	varied	
across the DGRP, it was not correlated with developmental delay on 
rapamycin (Spearman's ρ = −0.133,	p = 0.115,	Figure S1).
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To explore the degree to which rapamycin sensitivity is influ-
enced by dose, we sampled lines from the extremes of the pheno-
typic distribution to obtain four relatively resistant lines (mean delay 
of	 −0.058 ± 0.30 days	 (SD)),	 and	 two	 sensitive	 lines	 (mean	 delay	
of	 6.4 ± 0.75 days	 (SD)).	We	measured	 their	 development	 time	 on	
rapamycin	doses	ranging	from	2	to	1024 nmol.	Both	sensitive	lines	
showed	increasing	delay	beyond	2 nmol.	However,	the	four	resistant	
lines showed various responses to higher doses of rapamycin, with 
three	of	the	four	resistant	lines	delayed	above	2 nmol,	and	one	show-
ing	no	evidence	of	delay,	even	when	treated	at	1024 nmol	(Wilcoxon	
rank sum test, p < 0.05,	Figure 1b).

To test whether delayed development was associated with effects 
on larval size, we sampled four sensitive lines with a mean develop-
mental	delay	of	6.21 ± 0.63 days	 (SD),	 and	 two	 resistant	 lines	with	a	
mean	developmental	delay	of	−0.022 ± 0.05 days	(SD).	Measuring	the	
size	of	larvae	of	these	lines	over	the	course	of	3 days	revealed	a	signifi-
cant	effect	of	rapamycin	on	larval	size	(ANOVA,	size × treatment × phe-
notype, F(1,1391.44) = 135.3,	p = 6.6 × 10

−30), and on growth rates among 
the	sensitive,	but	not	the	resistant	lines	(size × day × treatment × pheno-
type F(2,1391.44) = 25.0,	p = 2.1 × 10

−11, Figure S2, Figure 1c, Section 4). 
Moreover, there was no effect of rapamycin on larval size at any day 
among the two resistant lines (F(1,511.08) = 0.97,	p = 0.33,	Figure S2).

2.2  |  Genetic variation for rapamycin sensitivity 
maps to biological pathways

To explore the potential association between genetic variation in 
the DGRP and the substantial variation in rapamycin sensitivity, we 

measured SNP heritability (H2
SNP), the proportion of variance ex-

plained by the genetic relatedness of the DGRP lines as estimated 
by the genotype data, using the gBLUP method (Rohde et al., 2020; 
Section 4). In the full dataset of 140 lines, H2

SNP = 0.80	(±0.35 SE), 
with large error in the estimate likely reflecting the modest power 
of 140 lines (Figure 2a). Bootstrap sampling of smaller numbers of 
lines indicated that approximately 130 lines was a sufficient number 
to estimate the H2

SNP observed in the complete data set, and sub-
samples below 130 lines showed wide variation in H2

SNP (Figure 2a). 
Given the relatively large variation in H2

SNP, we further tested the 
covariation between rapamycin sensitivity and the genetic related-
ness of the DGRP by permutation. Permuted heritability estimates 
were typically near zero, and H2

SNP exceeded the estimate from real 
data in only 41 of 1000 permutations (p = 0.041,	Figure 2b).

To look for genetic markers that might explain variation in rapa-
mycin	resistance	we	estimated	effects	of	1.09 × 106 markers using a 
linear mixed model (Section 4).	We	failed	to	identify	single	markers	
that	 reached	 genome-	wide	 significance	 (p > 9 × 10−6, FDR >0.999, 
Figure 2c, Table S2).	We	also	asked	if	rapamycin	sensitivity	is	associ-
ated with the mitochondrial polymorphisms in the DGRP, including 
single marker analysis or associations with the three main mito-
chondrial genotypes among these 140 lines. However, no mtDNA 
markers associated with sensitivity to rapamycin (Supplementary 
Materials).

The failure of individual markers to explain much of the pheno-
typic variation indicated that sensitivity may be highly polygenic, 
involving	many	variants,	each	of	weak	effect.	While	a	small	effect	
of an individual variant may not lead to differences among lines, 
perhaps several such small effects could be shared among a gene, 

F I G U R E  1 Wide-	ranging	genetic	variation	in	rapamycin	sensitivity	in	the	Drosophila Genetic Reference Panel (DGRP). (a) The mean 
developmental	delay	caused	by	rapamycin	(mean	pupation	time	on	2 nmol	rapamycin	-		mean	pupation	time	on	control)	for	each	of	140	
DGPR	lines	and	two	laboratory	lines	(Canton-	S	and	w1118). Error bars are the pooled standard error of the mean (Section 4). The average 
number	of	larvae	per	condition	was	77	(range = 3	to	216).	(b)	Mean	pupation	time	of	four	lines	that	are	resistant	(red)	and	of	two	sensitive	
lines	(blue)	at	doses	of	rapamycin	ranging	from	0	to	1024 nmol.	(c)	The	size	of	larvae	from	a	representative	resistant	line	(Ral_535,	mean	delay	
=0.02 ± 0.40d),	and	a	representative	sensitive	line	(Ral_348,	mean	delay = 5.5 ± 0.61d)	was	monitored	over	the	first	3 days	of	development	on	
either	control	food	(black),	or	food	containing	rapamycin	(yellow).	The	size	of	17–67	larva	were	measured	each	day.	Across	an	additional	five	
lines analyzed, both the size and the rate of size increase were significantly affected by rapamycin in sensitive lines, but not in resistant lines 
(ANOVA, p < 0.05,	Figure S2).

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14292, W

iley O
nline L

ibrary on [01/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 13  |     HARRISON et al.

or among the genes in a pathway. If so, the collective variation in a 
pathway then could associate with phenotypic variation among lines 
(Edwards et al., 2016). This idea prompted us to use the covariance 
association test (CVAT) (Rohde et al., 2016) to ask whether markers 
that	were	aggregated	at	 the	gene-	level	associated	with	 rapamycin	
sensitivity. The CVAT approach estimates the covariance between 
genome-	wide	 genetic	 effects	 and	 genetic	 effects	 of	 a	 subset	 of	
markers, and CVAT can be used to test whether markers associated 
with a gene, or other genome feature, are effectively enriched for 
associated	variants.	When	applied	to	the	1–4471	(mean = 596)	mark-
ers within each of 14,125 genes, we found the set of markers within 
the gene DptA was weakly associated with rapamycin sensitivity at 
an FDR of <16%	(p = 1 × 10−5, Table S3).	We	then	extended	this	anal-
ysis to include markers within ±1 kb	of	the	primary	transcript	of	each	
gene,	which	incidentally	included	830	additional	genes	that	then	had	
enough markers for this analysis. Variation at DptA ± 1 kb	was	 less	
associated with sensitivity (p = 4 × 10−5, FDR <0.64),	and	this	analysis	
did not reveal any additional genes (Table S3).

We	then	applied	CVAT	at	the	level	of	biological	pathways,	test-
ing variation in the genes in each of 127 Kyoto Encyclopedia of 
Genes	 and	 Genomes	 (KEGG)	 pathways,	 and	 4346	 gene	 ontology	
(GO)	terms.	While	no	terms	were	significant	at	FDR = 5%,	we	found	
two KEGG pathways and 23 GO terms significant at FDR <0.20 

(Table S3). Associated pathways include TGFβ and MAPK signal-
ing, hemocyte development, nurse cell apoptosis, and regulation of 
tracheal	diameter.	We	note	that	KEGG	pathways	and	GO	terms	are	
not mutually exclusive. In fact, the TGFβ signaling pathway as rep-
resented	by	both	KEGG	 (dme04350)	and	GO	 (GO:0060391)	were	
associated with rapamycin sensitivity (Table S3).	While	 the	mTOR	
signaling pathway was not itself significant (p = 0.03,	FDR = 0.528),	
the MAPK pathway is partially nested within the mTOR pathway. 
The null distribution of p- values is expected to be uniform. Using 
Q-	Q	analysis	against	the	null	distribution	of	P, both KEGG pathways 
and GO terms seem to associate more strongly with rapamycin sen-
sitivity when compared to associations of single genetic markers, or 
variation in individual genes (Figure 2d).

2.3  |  Rapamycin reshapes the metabolome of 
sensitive larvae

To gain further insight into the effect of rapamycin, we analyzed 
a panel of 154 aqueous metabolites in larvae of six resistant lines, 
with	mean	developmental	delays	 ranging	 from	−0.41	 to	0.02 days,	
and	 seven	 sensitive	 lines,	 with	mean	 delays	 ranging	 from	 4.76	 to	
7.09 days,	each	of	which	was	treated	with	either	rapamycin	or	control	

F I G U R E  2 Genetic	variation	in	rapamycin	sensitivity	maps	to	biological	pathways.	(a)	SNP	heritability	(H2
SNP) estimated by gBLUP among 

the	140	DGRP	lines	was	0.802 ± 0.35(SE).	H2
SNP estimates in each of 200 bootstrap subsamples of n lines. (b) H2

SNP estimated in each of 
1000	permutations	of	the	phenotype	are	highly	zero-	inflated	and	give	an	empirical	p = 0.041	for	the	real	estimate	(arrow).	(c)	There	was	
no	single	marker	associated	with	rapamycin	sensitivity	at	the	genome-	wide	threshold	(CVAT,	FDR	>0.99 for all markers). Manhattan plot 
showing the –log10 p	value	of	10,854	genetic	markers	(p ≤ 0.01),	across	each	chromosome	arm.	The	remaining	1.8 × 106 markers (p > 0.01)	are	
not plotted. (d) Genetic covariance can be partly attributed to genetic markers aggregated by Kyoto Encyclopedia of Genes and Genomes 
(KEGG)	pathways	or	gene	ontology	(GO)	terms.	Q-	Q	plots	for	the	–log10 p values for individual markers, and the empirical p- values among 
the CVAT analyses of genome features representing genes, KEGG pathways and GO terms.
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food	for	2 days	after	egg	laying.	Principal	components	analysis	(PCA)	
detected an effect of rapamycin on the metabolome among the sen-
sitive genotypes along PC1, as well as a distinction between resist-
ant and sensitive lines along PC6 (Figure 3a).	We	failed	to	 identify	
any individual metabolites associated with the resistance phenotype 
alone (ANOVA, FDR >5%). However, given the response of sensitive 
lines to rapamycin (Figure 3a), we looked specifically for metabolites 
that	have	 treatment	effects	within	 resistant	or	 sensitive	 lines.	We	
fit a mixed model with a fixed treatment effect to the metabolome 
data from resistant or sensitive larvae. The sign of treatment effects 
among resistant and sensitive lines was highly correlated (ρ = 0.48,	
p = 4.0 × 10−10, Figure 3b). However, the magnitude and significance 
of these effects differed markedly between resistant and sensitive 
lines. Of the 154 metabolites, four were significantly reduced in the 
rapamycin condition in both resistant and sensitive lines. However, 
in sensitive lines, an additional 24 were less abundant and 24 more 
abundant (FDR <5%, Figure 3b). These results indicate that rapa-
mycin affects metabolome profiles, primarily within sensitive lines, 
where perhaps the same response is attenuated among resistant 
lines.

We	 then	 sought	 to	 identify	 biochemical	 pathways	 whose	 ac-
tivity could explain the effects of rapamycin treatment among the 
resistant	or	sensitive	 lines.	With	154	metabolites,	we	were	under-
powered to perform standard enrichment analysis on the majority 
of biological pathways, and so we made use of a network enrich-
ment analysis that analyzes nodes in biological networks, looking 
for those that connect more closely to a set of metabolites than 
expected	by	chance	(Picart-	Armada	et	al.,	2018). The metabolites af-
fected by rapamycin in both resistant and sensitive larvae—cytosine, 
guanosine, inosine, and histidine—enrich nucleotide metabolism 
(dme01232,	FDR = 0.002),	protein	export	(dme03060,	FDR = 0.017),	
and	purine	metabolism	(dme00230,	FDR = 0.026).	When	we	analyzed	

the pathways enriched by the 52 metabolites that were affected by 
rapamycin	 in	 sensitive	 lines,	we	 identified	 dme00970—aminoacyl-	
tRNA	biosynthesis	(FDR = 0.003).

2.4  |  Rapamycin causes a starvation- like 
metabolome in sensitive larvae

Two related mechanisms that influence larval sensitivity to rapa-
mycin	are	autophagy	and	starvation	(Jouandin	et	al.,	2022; Scott 
et al., 2004). In sensitive larvae on rapamycin, we saw increased 
abundance	 of	 metabolites	 enriching	 aminoacyl-	tRNA	 synthe-
sis,	 and	 aminoacyl-	tRNA	 synthases	 regulate	 autophagy	 in	 larvae	
(Arsham	&	Neufeld,	2009).	Starvation	occurs	in	low-	nutrient	con-
ditions, where mTOR stimulates autophagy to recycle macromole-
cules back onto the nutrient pool (Scott et al., 2004).	We	therefore	
asked if rapamycin treatment has a similar effect to that of food 
deprivation on the larval metabolome, and if the response in 
rapamycin-	sensitive	larvae	is	like	starvation.	Jouandin	et	al.	(2022) 
measured the aqueous metabolome of larvae of the Drosophila line 
W1118	that	were	deprived	of	food	for	up	to	8 h	 (Section	4). Their 
data	included	measurement	of	84	of	the	154	metabolites	that	we	
measured	here.	The	first	principal	component	of	these	84	metabo-
lites in their data was highly associated with food deprivation time, 
such that longer starvation led to larger values of PC1, which for 
simplicity, we refer to as PCstarvation (Figure 4a).	When	we	 used	
the	 loadings	 of	 the	 84	 metabolites	 in	 PCstarvation to project the 
metabolome data from our study, we find not only that rapamy-
cin treatment led to larger PCstarvation values (ANOVA, treatment 
F(1,27) = 40.44,	p = 1.4 × 10

−6), but also that there was a highly sig-
nificant and consistent displacement of the metabolome along the 
PCstarvation	 axis	 in	 rapamycin-	sensitive	 lines	 (Figure 4b, ANOVA, 

F I G U R E  3 Rapamycin	primarily	affects	the	metabolome	of	sensitive	lines.	(a)	Plot	of	PC6 over PC1 of 154 metabolites in larvae of six 
resistant (R)	and	seven	sensitive	(S)	lines	on	food	treated	with	either	rapamycin	(rapa)	or	control	(−),	depicts	the	distinction	between	R 
and S along PC6, and the effect of rapamycin particularly on the metabolome of the S lines on PC1.	Ellipses	are	60%	confidence	intervals.	
(b) The effect of rapamycin (β)	on	metabolites	in	resistant	and	sensitive	lines.	Metabolites	with	effects	at	FDR	≤5%	in	sensitive	lines	
(red) or both sensitive and resistant lines (purple). No metabolites were affected in resistant lines that were not also affected in sensitive 
lines. Metabolites not affected are in grey. The correlation between β in resistant and sensitive lines is significant (Spearman's ρ = 0.48,	
p = 4.0 × 10−10).

(a) (b)
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treatment × phenotype	 F(1,27) = 21.06,	 p = 9.18 × 10−5). Thus, the 
metabolome	of	rapamycin-	sensitive	larvae,	when	treated	with	ra-
pamycin, resembles that of starved larva.

mTOR signals growth and development in response to nutrient 
status. Thus, we asked if nutrient deprivation would modify sensi-
tivity	 to	 rapamycin.	We	measured	 the	 effect	 of	 rapamycin	on	de-
velopment of seven resistant lines and six sensitive lines, on food 
containing 75% or 50% of the yeast and sugar of the standard 

(100%)	 food.	While	 food	 dilution	 delayed	 development	 by	 ~1 day	
at	 75%,	 and ~2d at 50% (p < 2 × 10−16), and rapamycin significantly 
delayed the development of sensitive lines at all tested food levels 
(p = 3.2 × 10−12), there was no indication that food dilution modified 
the sensitivity to rapamycin of either the sensitive of resistant gen-
otypes	 (food	condition × rapamycin	 treatment;	p > 0.27;	Figure 4c). 
To	 test	 the	 prediction	 that	 development	 in	 rapamycin-	sensitive	
genotypes is inherently more sensitive to nutrient deprivation, we 

F I G U R E  4 Rapamycin	induces	a	starvation-	like	metabolome	in	sensitive	larvae,	and	sensitivity	is	unaffected	by	nutrient	deprivation.	
(a) The first principal component (PCstarvation)	of	84	metabolites	in	w

1118	larvae	exposed	to	PBS-	soaked	paper	for	0–8 h	(starvation	time,	
Jouandin	et	al.,	2022). The red line is the fit of an exponential model (r2 = 0.91,	p = 9.68 × 10−6, Section 4). (b) The metabolome data from 
the	same	84	metabolites	in	larva	of	sensitive	or	resistant	lines	on	control	(cont)	or	rapamycin	(rapa)	food	was	projected	onto	PCstarvation. 
Rapamycin had a significant effect on PCstarvation that was specific to the sensitive larva (p = 8.0 × 10−5). (c) The mean pupation times 
of five sensitive lines and seven resistant lines on control food (100%) or food with the yeast and sugar components diluted to 75% or 
50%, were measured under rapamycin and control treatments. Food dilution slowed development (β75 = 1.09,	p = 2.2 × 10

−15; β50 = 3.02,	
p < 2 × 10−16), as did rapamycin treatment among the sensitive lines (p < 2 × 10−16). However, food dilution did not affect rapamycin sensitivity 
(treatment × food,	and	treatment × food × phenotype,	p < 0.13).
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    |  7 of 13HARRISON et al.

compared the developmental delay elicited by food dilution in sensi-
tive and resistant genotypes in the absence of rapamycin and found 
no difference in their response (p > 0.46;	Figure 4c).

3  |  DISCUSSION

Extensive laboratory studies have identified mTOR as a driver or 
modulator of pathways that are intimately connected to life his-
tory and longevity. However, efforts to translate discoveries from 
laboratory models into medical interventions will inevitably need 
to address the possibility that the efficacy of these treatments 
might depend on genetic background. Here we exploit the pace of 
early Drosophila development to examine the influence of genetic 
variation	on	 the	 effect	 of	 rapamycin.	While	 not	 directly	 assessing	
longevity, focusing on larval development as an indicator of rapa-
mycin activity provided a means to rapidly screen many conditions 
(Lithgow	&	Walker,	2002; Scott et al., 2004).

Until now, much of the published work dissecting rapamycin ac-
tion on lifespan in adult flies has involved the outbred strain Dahomey 
(Bjedov et al., 2010; Schinaman et al., 2019). Using six lines from the 
DGRP, Rohde et al. (2021) demonstrated genetic variation for the 
effect of rapamycin on adult longevity, suggesting that genetic varia-
tion	in	part	determines	sensitivity	to	this	longevity	intervention.	We	
show that, at a dose sufficient to delay the development of most 
Drosophila lines, there is a continuum of responses manifesting as 
developmental	delays	of	−4.5%–79%	of	the	control	developmental	
period.	We	also	show	that	this	range	of	delay	over	the	same	dose	
is only one axis of variation. Among lines resistant to the screening 
dose, there is yet more variation in the dose–response, including one 
of four lines that showed no delay on media containing up to 512× 
the screening dose, and various degrees of dose–response in the 
other lines. The developmental delay that we observe was accom-
panied by slower growth in larval size, consistent with studies that 
use either pharmacological or genetic manipulation of mTOR activity 
(Layalle et al., 2008; Oldham et al., 2000; Scott et al., 2004; Zhang 
et al., 2000). Together our results indicate that Drosophila popula-
tions maintain substantial natural genetic variation for sensitivity to 
rapamycin.

3.1  |  How are resistant and sensitive larvae 
different?

We	investigated	the	variation	in	rapamycin	sensitivity	in	two	ways;	
first, by looking for genetic variation associated with resistance 
measured as a continuous trait among 140 DGRP lines, and second, 
by comparing the metabolome of groups of lines at the extremes 
of the distribution of resistance and sensitivity. This latter approach 
has been used successfully to dissect the response of adult flies 
to hydrogen peroxide, where it revealed remarkable convergence 
on glycogen metabolism in sensitive genotypes, in contrast to the 
relative insensitivity of resistant genotypes (Harrison et al., 2020). 

We	find	a	 similar	pattern	 in	 the	 response	 to	 rapamycin	as	well.	 In	
contrast to the effect of rapamycin on the metabolome of resistant 
larva, the metabolome of sensitive larvae shows a dramatic response 
with respect to many metabolites. This analysis considered resistant 
and sensitive lines as binary classes and so was underpowered to de-
tect variation within the two classes of resistant and sensitive lines.

In sensitive larvae under rapamycin, we see effects on amino 
acids, including glutamine, serine, histidine, and glutamic acid, and 
the	 fatty	 acid-	related	metabolites	 phosphorylcholine,	 acetylcarni-
tine, and carnitine. These metabolites have peripheral roles in the 
activity of the TCA cycle, which harvests energy from fatty acids in 
response	to	mTOR	inhibition	(Jouandin	et	al.,	2022).	We	also	show	
that	rapamycin	treatment	induces	a	starvation-	like	state	in	the	larval	
metabolome of sensitive larvae (Figure 4), a response that is con-
sistent with transcriptome analysis of mammalian cells treated with 
rapamycin (Peng et al., 2002). The metabolites affected by rapamy-
cin in sensitive larvae are enriched for the tRNA biosynthesis (tRNA 
charging) pathway. tRNA charging is the attachment of amino acids 
to their cognate tRNAs. There is compelling evidence for the involve-
ment of tRNAs in the regulation of larval growth by mTOR (Rideout 
et al., 2012;	Rojas-	Benitez	et	al.,	2015), and so this mechanism may 
explain the sensitivity of lines in this study. Alternatively, the en-
richment of tRNA charging may simply reflect the numerous amino 
acids whose abundances are affected by rapamycin. This result is 
consistent with a shift from protein synthesis and toward autophagy 
under mTOR inhibition (Scott et al., 2004).

The metabolomic response of sensitive larvae to rapamycin indi-
cates that they either perceive nutrient limitation via reduced mTOR 
signaling or are under actual nutrient limitation by some undetermined 
mechanism. Nutrient supply and the perception of its status is critical 
for growth and the developmental transitions that determine the time 
it takes to progress from egg to pupa (Texada et al., 2020).	We	hy-
pothesized that, by experimentally limiting nutrients, larvae that were 
otherwise insensitive would become sensitive due to reduced growth 
signaling. Instead, we found that limiting nutrients to levels sufficient to 
delay development was not sufficient to alter the sensitivity of larvae 
to rapamycin, neither making resistant larvae sensitive, nor enhancing 
the sensitivity of sensitive larvae (Figure 4c). The independence of the 
developmental delay induced by rapamycin and that from nutrient lim-
itation	suggests	that	either	the	starvation-	like	effect	of	rapamycin	on	
the metabolome is independent or downstream of the developmental 
delay or that food dilution acts independently on development.

The ultimate cause of variation in rapamycin sensitivity that we 
describe is genetic. Relatedness among the DGPR, as reflected in 
their similarity over ~104 genetic markers, accounts for approxi-
mately	80%	of	the	variance	in	the	developmental	delay	among	the	
lines (Figure 2). Such a high H2

SNP suggests rapamycin sensitivity is 
highly	predicted	by	the	genome-	wide	similarity	among	lines.	While	
this may be the case, we also show that this estimate is sensitive to 
the	number	of	lines	analyzed	and,	while	significantly	non-	zero,	is	only	
weakly significant based on permutation tests (p = 0.041,	Figure 2). 
While	we	were	not	able	 to	 find	 individual	genetic	markers	associ-
ated with rapamycin sensitivity, markers grouped at the gene and 
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pathway levels identified several putative modifiers of rapamycin 
sensitivity. Our observation of stronger associations when genetic 
variation was aggregated to the gene or pathway levels (Figure 2d) 
is similar to results from previous studies (Edwards et al., 2016). At a 
marginal FDR threshold of <16%,	variation	in	DptA, which encodes 
an antimicrobial peptide (AMP), associates with rapamycin sensitiv-
ity. In this study, larval growth was measured on media containing 
the fungicide tegosept and the antibiotics kanamycin and tetracy-
cline (Section 4), conditions that substantially reduce microbial load, 
so the association between rapamycin sensitivity and DptA is not 
likely due to infection. Independent of infection, DptA, along with 
other AMPs, is induced by FOXO in response to nutrient stress, or 
in response to mTOR inhibition by rapamycin, and their induction 
is required for timely larval development (Kamareddine et al., 2018; 
Varma et al., 2014). Therefore, the genetic association we find pro-
vides suggestive evidence for a causal role for DptA in the growth 
effect of rapamycin.

At the pathway level, genetic variation in rapamycin sensitiv-
ity associates with developmental processes, including embryonic 
hindgut morphogenesis, foregut morphogenesis, and TGFβ signaling 
(Table S3). In adult flies, rapamycin affects the activity of intestinal 
stem cells, and the intestine is a target for lifespan extending ef-
fects of rapamycin (Schinaman et al., 2019). Thus, genetic variation 
in gut development or function may explain some of the variation in 
sensitivity to rapamycin that we report. In larvae, Dpp, a fly homo-
log	of	the	growth-	regulatory	ligand	TGFβ, modulates mTOR activity 
(Denton et al., 2019).	While	not	significant	genome-	wide	 (p = 10−4, 
FDR = 61%),	Dpp	is	the	second-	most	associated	gene	in	our	analysis.	
The association between rapamycin sensitivity and TGFβ signaling 
lends	support	to	a	non-	canonical	model	of	rapamycin	action	that	has	
emerged from other studies. In the canonical mammalian models, 
rapamycin	 binds	 to	 the	 FK506-	binding	 protein	 FKBP12,	 and	 this	
complex	binds	mTOR,	preventing	its	function	(Liu	&	Sabatini,	2020). 
The Drosophila homolog of FKBP12 is part of an eight gene fam-
ily, Fkbp12	being	the	closest	homolog	to	human	FKBP12	(Ghartey-	
Kwansah et al., 2018).	 While	 the	 interaction	 with	 rapamycin,	
FKBP12, and mTOR has not been demonstrated in flies, there is 
evidence that rapamycin can interfere with a direct interaction 
between FKBP12 and the Dpp receptor (Chen et al., 1997;	Wang	
et al., 1996). Together with the genetic association we find, these 
results suggest that rapamycin may have direct cellular targets other 
than	FKBP12-	mTOR	that	are	relevant	for	growth	in	Drosophila (Chen 
et al., 1997; Miyakawa et al., 2018).	We	did	not	find	any	association	
with variants in the Tor gene, and only weak association with genetic 
variation in the mTOR pathway (Table S3). However, the association 
with MAPK signaling indicates an axis of variation that intersects 
with the mTOR pathway.

Given	 that	 rapamycin	 has	well-	defined	 targets,	 it	 is	 somewhat	
surprising that the heritable genetic signal appears to be diffused 
over many loci, failing to associate strongly with any of the many 
thousands of markers in the DGRP (Huang et al., 2014). This could 
be due either to associations with alleles that did not meet our minor 
allele frequency threshold, to a lack of segregating variants in mTOR 

pathway-	associated	genes,	or	to	latent	genetic	variation	that	at	the	
time of the last public data release (Freeze 2.0) was either undeter-
mined or remained heterozygous (Huang et al., 2014). The mapping 
we describe only incorporates markers that were called homozygous 
in Freeze 2.0, and so would not consider loci that have since fixed 
and that may associate with sensitivity.

Beyond the implications of demonstrating a high degree of ge-
netic variation for the response to a longevity intervention, this work 
points toward a strategy to detect, predict, and explain variation in 
the response to rapamycin in Drosophila	 and	other	 species.	While	
the genetic signal captured here is either highly polygenic, or unre-
solved, we show here that the metabolomic signal is strong and con-
sistent. Future efforts can and should investigate the utility of the 
metabolome as a biomarker of the response to rapamycin or other 
pharmacological healthspan interventions.

3.2  |  Limitations of the study

The current study measures developmental delay at a dose of rapa-
mycin	that	reveals	substantial	variation	across	genotypes.	We	also	
show a dramatic dose–response among lines, so perhaps phenotypic 
variation in the response to an alternative dose might associate more 
strongly	with	underlying	genetic	variation.	We	also	focus	entirely	on	
larvae and so how the variation in the larval response relates to the 
variation described in the effect of rapamycin on adult fly lifespan 
is an open question (Bjedov et al., 2010; Rohde et al., 2021). The ef-
fect of rapamycin on adult Drosophila	lifespan	is	also	sex-	dependent	
(Bjedov et al., 2010). Because determining the sex of larvae is labori-
ous, rapamycin sensitivity was measured in mixed sex populations 
and therefore some portion of the phenotype may be due to sex bias 
among the larvae surveyed per line per condition.

4  |  METHODS

4.1  |  Flies

The	 Canton-	S	 stock	 and	 lines	 from	 the	 DGRP	 were	 purchased	
from the Bloomington Drosophila Stock Center (Indiana University, 
Bloomington,	 IN).	 W1118 was kindly gifted by Leo Pallanck, 
University	of	Washington.	For	 routine	propagation,	 flies	were	cul-
tured	on	media	containing	5.5%	dextrose,	3%	sucrose,	6%	corn	meal,	
2.5% yeast, 0.9% agar, 0.9% EtOH, 0.3% tegosept, and 0.3% propi-
onic acid. Drosophila populations were maintained at ~200 eggs per 
bottles, with ~50 mL	media,	and	cultured	under	a	12:12 h	light:	dark	
cycle	at	25°C	with	40%–60%	humidity.

4.2  |  Media preparation

To	increase	batch-	to-	batch	consistency	for	the	developmental	tim-
ing screen and minimize bacterial growth during the assay, we used 
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    |  9 of 13HARRISON et al.

a	modified	media	recipe.	Experimental	media	consisted	of	6%	dex-
trose,	3%	sucrose,	6%	corn	meal,	2.5%	yeast,	0.9%	agar,	1.2%	EtOH,	
0.3%	tegosept,	0.3%	propionic	acid,	50 μg/mL	kanamycin,	and	20 μg/
mL	tetracycline.	To	make	experimental	media,	120 g	corn	meal,	50 g	
yeast,	and	18 g	agar	were	gently	boiled	in	2 L	diH2O on a heated stir-
rer,	and	then	autoclaved	at	121°C	for	45 min.	Media	were	returned	
to	stirrer,	allowed	to	cool	to	60°C,	and	then	220 mL	of	50%	dextrose,	
120 mL	50%	sucrose,	6 mL	of	propionic	acid,	and	6 g	 tegosept	dis-
solved	 in	24 mL	ethanol,	were	added.	Finally,	50 μg/mL kanamycin 
and	20 μg/mL tetracycline were added. A peristaltic pump was used 
to	dispense	10 mL	of	media	into	vials	which	were	then	stored	at	4°C	
and	used	within	2 weeks	of	preparation.	For	diluted	yeast	and	sugar	
food, the above protocol was followed, but the amount of yeast, 
glucose, and sucrose was reduced to 75% or 50% of the original 
amounts while other ingredients remained the same.

Rapamycin treatment was administered as an overlay to food in 
vials.	To	prepare	rapamycin	and	control	media,	either	a	1 mM	rapa-
mycin stock was made by dissolving rapamycin in EtOH at room 
temperature	and	then	kept	at	−20°C;	or,	for	the	dose–response	ex-
periments,	1 mL	of	20.5 mM	rapamycin	stock	was	made	by	dissolv-
ing	18.7	mg	to	1.0	mL	 in	EtOH	by	vortex	mixing	 in	a	1.5 mL	tube.	
Rapamycin stocks were diluted to the appropriate concentration 
with EtOH, and control solution was just EtOH. For all treatment 
and	control	vials,	50 μL of solution was overlaid onto vials, and vials 
were covered and left overnight on the benchtop to allow food sur-
face to dry.

4.3  |  Development time assay

To collect embryos for development time analysis, 200–300 flies 
from each line were allowed to lay eggs on grape juice agar plates in 
egg chambers, with a small quantity of yeast paste and diluted apple 
cider vinegar on each plate. Fly populations were maintained in egg 
chambers for 2 to 3d and plates were replaced each day. On the day 
before embryo collection, plates were replaced in the evening and 
embryos were collected the next morning to randomly numbered 
experimental vials (40 embryos per vial) using platinum wire picks 
that	were	flame-	sterilized	between	vials,	with	three	to	four	vials	per	
treatment	condition.	Vials	were	kept	in	trays	at	25°C,	12/12 h	light	
cycle	and	50%–60%RH.	The	DGRP	lines	were	screened	in	batches	
of ~10–30	 lines	 each.	 To	 estimate	 batch-	to-	batch	 variation,	 two	
DGRP	 lines	 (Ral45	 and	 Ral321)	 and	 two	 laboratory-	adapted	 lines	
(W1118	and	Canton-	s)	were	tested	in	each	batch.	To	verify	the	geno-
type of experimental flies, adults from egg chambers were stored 
at	−20°C	until	PCR	genotyping.	Development	times	were	recorded	
when new pupae were counted and removed from each vial, once 
or twice per day, until all vials ceased to produce pupae for two con-
secutive days.

Mean pupation time for each line treated with rapamycin or vehi-
cle	was	estimated	by	pooling	all	pupae	across	replicates	(mean = 77,	
range = 3–216	per	genotype	and	condition).	To	quantify	the	devel-
opmental delay due to rapamycin, the average pupation time for the 

control condition was subtracted from the average pupation time 
on rapamycin. To measure the error in the estimated developmental 
delay for each line, we calculated the pooled standard deviation (s) 
to then get the pooled standard error (SE).

Where	 nr and nc are the numbers of pupae in rapamycin and 
control vials respectively and sr and sc are the respective standard 
deviations of development times in each condition. Pooled standard 
error is then:

4.4  |  Larval size

To measure effects of rapamycin on larval size, we raised larvae 
from embryos on food with and without rapamycin and collected 
17–67	(mean = 39)	larvae	from	each	genotype	and	condition	on	each	
of	Days	1,	2,	and	3.	Larvae	were	collected	into	phosphate-	buffered	
saline	(PBS)	on	microscope	slides,	heat-	killed	on	a	hot	block	at	70°C	
for ~1 min	and	imaged	under	a	microscope.	The	size	(area,	mm2) of 
each larva was measured by a single blinded researcher who traced 
the	outline	of	larvae,	calculated	the	area	in	pixels	using	ImageJ,	and	
converted to mm2 (Schneider et al., 2012). To test the hypothesis 
that sensitivity phenotype influences the effect of rapamycin on size 
and/or growth rate, we used a linear mixed model that included a 
random	effect	of	 line	 (1|line),	and	two-	way	and	three-	way	 interac-
tion terms (e.g., βday×T×P) between effects of rapamycin treatment 
(βT = rapamycin	vs.	control),	larval	area	and	growth	rate	(area	by	βday), 
and sensitivity phenotype of the sampled genotypes (βP = resistant	
vs. sensitive).

4.5  |  Genetic association

The developmental delay phenotype for each line was prepared 
for association testing by normalizing and correcting for batch ef-
fects across the DGRP screen. This was done by first adding one 
(to	remove	negative	values),	and	then	applying	the	Box-	Cox	trans-
formation. Transformed data were then centered within each ex-
perimental batch by subtracting the mean values of the four lines 
included	 in	every	batch	 (Ral45,	Ral321,	W1118,	and	Canton-	S).	The	
centered data were then scaled within each batch by dividing by the 
batchwise standard deviation.

SNP heritability (H2
SNP) was estimated using the proportion of 

variance in rapamycin sensitivity (y) that was explained by the joint 
effects of all markers, the genomic best linear unbiased predictions 
(gBLUPs). The gBLUPs were estimated as a random effects (v) of the 
genomic relationship matrix (GRM, Z), in a mixed model that included 
fixed effects (β)	of	Wolbachia	status	and	the	genotype	of	inversions	

pooled s =

√

(
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)

s2
r
+
(
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)
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In.2 L.t,	In.2R.NS,	In.3R.P,	In.3R.K,	and	In.3R.Mo	in	a	design	matrix	
(X), and Gaussian error (ε) using the qgg package (Rohde et al., 2020).

The GRM was built using the grm function in the qgg package, 
on	mean-	centered	and	scaled	genotypes	of	6.5 × 104 variants among 
the	140	 lines	 in	 the	 study	 (MAF	≥5%,	 genotyping	 rate	≥95%,	 and	
LD-	pruned	to	r2 ≤ 0.8	in	200 kb	windows,	sliding	5 kb,	with	PLINK	1.9	
(Chang et al., 2015)).

Genetic associations with rapamycin sensitivity were conducted 
in	two	ways,	by	single	marker	analysis,	and	by	a	set-	based	approach	
using the covariance association test (CVAT) (Rohde et al., 2016) 
to	 look	 for	 gene-		 and	 pathway-	level	 associations.	 To	 get	 single	
marker	effects,	the	covariance	between	each	of	1.09 × 106 genetic 
markers (MAF >5%, genotyping rate >80%)	 and	 the	 gBLUPs	was	
tested using the lma function in the qgg package. Genetic mark-
ers	 included	 1.01 × 106	 snps,	 4.3 × 104	 deletions,	 3.4 × 104 indels, 
and 937 multiple nucleotide polymorphisms. The resulting p- values 
were	adjusted	for	multiple	testing	using	the	FDR	approach	(Storey	&	
Tibshirani, 2003).	To	test	for	gene-		and	pathway-	level	associations	
we used the CVAT method. At the gene level, each genome feature 
that we tested included either all markers located within the primary 
transcript of a gene (based on flybase 5.57 annotations, flyba se. org), 
or, in a separate analysis, the features also included markers ±1 kb	
from	 the	primary	 transcript.	At	 the	pathway	 level,	 gene-	level	 fea-
tures were further combined into GO terms and KEGG pathways. 
We	removed	pathways	with	only	a	single	gene	or	with	fewer	than	
200 total markers, and then one pathway at a time, all markers in all 
genes were fit simultaneously (Rohde et al., 2016). The test statistic 
in CVAT has an undefined probability distribution and therefore its 
significance	was	evaluated	by	1 × 106 permutations within the gsea 
function, to calculate an empirical p- value. Empirical p- values were 
then adjusted by FDR.

4.6  |  Metabolomics sampling

For larval metabolomics, embryos from six resistant and seven sen-
sitive lines were harvested from egg chambers and added to repli-
cate rapamycin or control vials as in the developmental screen. For 
larvae sampling, the egg laying window for flies to deposit embryos 
on	egg	chamber	plates	was	reduced	to	4–6 h	and	each	line	and	treat-
ment	combination	was	sampled	in	three	replicate	vials.	After	2 days	
in	treated	vials,	2–3 mL	of	1X	PBS	was	added	to	vials.	After	2–4 min,	
larvae suspended in PBS were pooled between replicates into a petri 
plate. For each condition, up to 50 larvae were then transferred to 
1.5 mL	microfuge	tubes.	Residual	PBS	was	aspirated,	and	larvae	were	
flash	frozen	in	 liquid	nitrogen	and	stored	at	−80°C	until	processed	
for	metabolomics.	All	steps	of	this	experiment	were	repeated	1 day	
later, and each replicated experiment is referred to as a batch.

Aqueous metabolites for targeted LC–MS profiling of 54 fly lar-
vae samples were extracted using a protein precipitation method 
similar to the one described elsewhere (Meador et al., 2020). 

Samples	were	first	homogenized	in	200 μL purified deionized water 
at	4°C,	and	then	800 μL	of	cold	methanol	containing	124 μM	[6-	13C] 
glucose	and	25.9 μM	[2-	13C] glutamate was added (13C labeled inter-
nal standards were added to the samples in order to monitor sam-
ple	prep).	Afterwards,	samples	were	vortexed,	stored	for	30 min	at	
−20°C,	sonicated	in	an	ice	bath	for	10 min,	centrifuged	for	15 min	at	
18,000×g	 and	4°C,	 and	 then	600 μL of supernatant was collected 
from each sample. Lastly, recovered supernatants were dried on a 
SpeedVac	at	30°C	and	reconstituted	in	0.5 mL	of	LC-	matching	sol-
vent	containing	17.8 μM	[2-	13C]	tyrosine	and	39.2 μM	[3-	13C] lactate 
(13C labeled internal standards were added to the reconstituting sol-
vent in order to monitor LC–MS performance). Samples were trans-
ferred	into	LC	vials	and	placed	into	a	4°C	auto-	sampler	for	LC–MS	
analysis.

4.7  |  LC–MS assay

Targeted	 LC–MS	metabolite	 analysis	was	 performed	 on	 a	 duplex-
 LC–MS system composed of two Shimadzu UPLC pumps, CTC 
Analytics	 PAL	 HTC-	xt	 temperature-	controlled	 auto-	sampler	 and	
AB	Sciex	6500+ Triple Quadrupole MS equipped with ESI ioniza-
tion source (Meador et al., 2020). UPLC pumps were connected to 
the	auto-	sampler	in	parallel	and	were	able	to	perform	two	chroma-
tographic separations independently from each other. Each sam-
ple	was	injected	twice	on	two	identical	analytical	columns	(Waters	
XBridge BEH Amide XP) performing separations in hydrophilic in-
teraction	liquid	chromatography	mode.	While	one	column	was	per-
forming separation and MS data acquisition in ESI+ ionization mode, 
the other column was being equilibrated prior to sample injection, 
chromatographic	separation	and	MS	data	acquisition	in	ESI-		mode.	
Each	chromatographic	separation	was	18 min	(total	analysis	time	per	
sample	was	36 min).	MS	data	acquisition	was	performed	in	multiple-	
reaction-	monitoring	mode.	The	LC–MS	system	was	controlled	using	
AB	 Sciex	 Analyst	 1.6.3	 software.	Measured	MS	 peaks	were	 inte-
grated using AB Sciex MultiQuant 3.0.3 software. In every sample 
the	 LC–MS	 assay	 detected	 158	 metabolites,	 four	 of	 which	 were	
spiked isotopic reference internal standards. In addition to the study 
samples, two sets of quality control (QC) samples were used to mon-
itor the assay performance as well as data reproducibility. One QC 
[QC(I)] consisted of a pooled human serum sample used to monitor 
system performance and the other QC [QC(S)] consisted of pooled 
study samples and was used to monitor data reproducibility. Each 
QC sample was injected per every 10 study samples. The data were 
highly reproducible, with a median CV of 5.1%.

4.8  |  Metabolomic data analysis

LC–MS peak intensity data from 154 metabolites were loge trans-
formed	and	then	the	data	within	each	sample	were	mean-	centered	
and	 scaled	 to	 SD = 1.	 Potential	 effects	 of	 two	 metabolite	 extrac-
tion batches were removed using the ComBat function in the sva 

y = X� + Z� + �
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package	 (Johnson	 et	 al.,	 2007). Principal components were com-
puted on scaled metabolite values. Individual metabolites whose 
abundance might differ between sensitive and resistant lines were 
tested by Type III ANOVA with a treatment by phenotype interac-
tion term (�T×P), including line as a random effect:

p- values	 for	 each	 term	were	 FDR-	corrected	 for	multiple	 com-
parison.	We	tested	individual	metabolites	for	effects	of	rapamycin	
within samples from each phenotype by fitting a mixed model with 
treatment as a fixed effect, and a random effect of line, with FDR 
correction.

Pathway enrichment of metabolites with significant treatment 
effects	 was	 performed	 with	 the	 FELLA	 package	 (Picart-	Armada	
et al., 2018). A network graph of 4173 metabolites, 5724 reactions, 770 
enzymes,	176	modules,	and	138	pathways,	was	constructed	from	the	
KEGG database release 109.0. Of 154 metabolites measured in this 
study, 133 were mapped to a KEGG identifier. Of these, 49 had treatment 
effects in sensitive larvae and four had treatment effects in resistant 
larvae, and both sets were tested for enrichment of the KEGG network 
using	the	network	diffusion	method	(Picart-	Armada	et	al.,	2018). The 
significance of enrichment was assessed by comparison to 105 permu-
tations within the 133 measured compounds. Empirical p- values were 
adjusted for multiple testing using the FDR approach.

To represent the metabolomic effect of starvation in a single 
vector,	 metabolomic	 data	 from	 five	 replicates	 of	 25	 to	 38	 whole	
W1118	 larvae,	 at	0,	2,	4,	6,	or	8 h	on	PBS-	soaked	paper,	were	pro-
vided	by	 Jouandin	et	al.	 (2022).	We	 removed	metabolites	with	>1 
missing value and imputed the remaining 10 metabolites that had 
only	one	missing	value	using	10-	nearest	neighbor	mean	imputation.	
We	normalized	the	data	of	Jouandin	et	al.	(2022)	by	mean-	centering	
and scaling by sample. Names of each metabolite in the two data-
sets	 were	manually	 matched.	 Of	 the	 84	 intersecting	metabolites,	
nine metabolites had two complementary measurements from both 
positive	and	negative	ion	LC/MS	modes	in	the	Jouandin	et	al	data.	
To estimate the levels of these metabolites, we scaled the data by 
metabolite and took the mean of each pair of ions for each sample. 
We	then	performed	PCA	on	the	data	from	Jouandin	et	al.	and,	used	
non-	linear	 least	 squares	 in	 the	 stats	R	 package	 to	 fit	 an	 intercept	
(a = 20.53),	and	two	shape	parameters	(b = 2.77	and	c = 10.01)	in	the	
model shown below, finding that PCstarvation	had	a	strong	non-	linear	
relationship with starvation time (time, r2 = 0.91,	p = 1.3 × 10−13):

We	used	loadings	of	the	84	metabolites	on	PCstarvation to assess 
the	metabolome	of	 rapamycin-	treated	 larvae	 compared	 to	 control	
larvae in our study. The interaction between rapamycin treatment 
and the sensitivity of the larvae on PCstarvation was assessed with a 
mixed model.
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