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Abstract
The progress made in aging research using laboratory organisms is undeniable. Yet, 
with few exceptions, these studies are conducted in a limited number of isogenic 
strains. The path from laboratory discoveries to treatment in human populations is 
complicated by the reality of genetic variation in nature. To model the effect of genetic 
variation on the action of the drug rapamycin, here we use the growth of Drosophila 
melanogaster larvae. We screened 140 lines from the Drosophila Genetic References 
Panel for the extent of developmental delay and found wide-ranging variation in their 
response, from lines whose development time is nearly doubled by rapamycin, to 
those that appear to be completely resistant. Sensitivity did not associate with any 
single genetic marker, nor with any gene. However, variation at the level of genetic 
pathways was associated with rapamycin sensitivity and might provide insight into 
sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong 
response of the metabolome to rapamycin, but only among the sensitive larvae. In 
particular, we found that rapamycin altered levels of amino acids in sensitive larvae, 
and in a direction strikingly similar to the metabolome response to nutrient depri-
vation. This work demonstrates the need to evaluate interventions across genetic 
backgrounds and highlights the potential of omic approaches to reveal biomarkers of 
drug efficacy and to shed light on mechanisms underlying sensitivity to interventions 
aimed at increasing lifespan.
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1  |  INTRODUC TION

Rapamycin and related inhibitors of the mechanistic target of 
rapamycin (mTOR) pathway are of great interest as potential inter-
ventions to extend organismal lifespan (Kaeberlein, 2017). Studies 
of diverse organisms, from yeast to mammals, suggest that de-
creased mTOR signaling can extend lifespan (Bjedov et al., 2010; 
Harrison et al., 2009; Kaeberlein et al., 2005). However, laboratory 
studies of rapamycin have focused almost exclusively on a hand-
ful of inbred laboratory strains. As such, little is known regard-
ing variation in the efficacy of rapamycin in natural populations. 
Studies in yeast (Schleit et al., 2013), flies (Jin et al., 2020), worms 
(Onken et al., 2022), and mice (Liao et al., 2010) have pointed to 
a major role for genetic variation in shaping the response to aging 
interventions. Similarly, two studies have found that rapamycin's 
effect on Drosophila lifespan varies strongly by genotype (Bjedov 
et  al.,  2010; Rohde et  al.,  2021). However, these latter studies 
were relatively small in scale. Little is known about the full ex-
tent of variation in sensitivity to rapamycin, nor the underlying 
mechanisms for this variation. Given the interest in the potential 
of rapamycin to increase lifespan, it is critical that we understand 
the potential causes and consequences of variation in rapamycin 
sensitivity.

The emphasis on experimental work on a limited number of 
strains is perhaps not surprising, as lifespan studies are time-  and 
labor-intensive. In the 1990s, researchers found that at least in some 
species, stress resistance could be used as a proxy for lifespan, sav-
ing time and effort (Lithgow & Walker, 2002). In the present work, 
we were interested in identifying genetic variation for response to 
rapamycin in the fruit fly, Drosophila melanogaster. While our even-
tual goal is to identify variation in the lifespan response, here we 
turn our attention to development time, which can be slowed dra-
matically by rapamycin.

To explore the role of genetic background on response to rapa-
mycin, here we target larval growth. Numerous studies have used 
the growth of larvae to investigate mTOR function in Drosophila 
(Layalle et al., 2008; Oldham et al., 2000; Scott et al., 2004; Zhang 
et al., 2000). Larval development is delayed by a variety of manip-
ulations that reduce mTOR activity, including rapamycin and star-
vation (Oldham et al., 2000; Scott et al., 2004; Zhang et al., 2000). 
The mTOR pathway regulates larval growth, primarily through its 
effects on cell growth, but also influences a variety of other organ-
ismal processes in Drosophila including cell differentiation and de-
velopment, hematopoiesis, and behavior (Benmimoun et al., 2012; 
Wen et al., 2017). This diversity of downstream targets provides the 
opportunity for a sensitive readout of mTOR function in response to 
rapamycin. Here we used delayed larval development time as a mea-
sure of rapamycin sensitivity. To model natural genetic variation, we 
used the Drosophila Genetic Reference Panel (DGRP), a population 
of wild-derived inbred lines that captures substantial genetic varia-
tion (Huang et al., 2014).

We found remarkable genotypic variation in developmen-
tal delay in response to rapamycin across the DGRP, with some 

genotypes showing rapamycin sensitivity that exceeded com-
mon laboratory lines, and others that were completely resistant, 
showing no effect even at over 500 times the dose that we used 
for screening. We found weak evidence of heritability that could 
be attributed to the single nucleotide polymorphism (SNP) gen-
otype data available for the DGRP, with estimates varying sub-
stantially in population subsamples. A genome-wide association 
study (GWAS) failed to identify statistically significant associa-
tions between rapamycin sensitivity and any single genetic vari-
ant or gene. However, when we looked for larger sets of variants 
aggregated by biological pathway, we found associations between 
rapamycin sensitivity and pathways involved in morphology, de-
velopment, and cell signaling. To further explore the mechanisms 
by which genotype affects rapamycin sensitivity, we sampled 
groups of lines at the extremes of the phenotypic distribution, a 
design that treated rapamycin sensitivity as a dichotomous trait. 
Finally, we turned to metabolome profiling as a strategy to bridge 
the gap between genotype and phenotype for complex, polygenic 
traits (Harrison et al., 2020), asking whether metabolome profiles 
were associated with sensitivity using metabolomics.

In the absence of rapamycin, the metabolome of sensitive and 
resistant lines was indistinguishable. However, within sensitive lines, 
we observed strong and consistent effects of rapamycin on the me-
tabolome, effects that strikingly recapitulated those of starvation. 
This work demonstrates both extensive polygenic variation in rapa-
mycin sensitivity, while also showing that sensitive lines appear to 
converge on a common metabolome response. This work provides a 
strong rationale for the development of metabolomic biomarkers for 
rapamycin sensitivity.

2  |  RESULTS

2.1  |  Extensive natural genetic variation in 
sensitivity to rapamycin

Larval growth and the pace of development are mTOR-dependent 
and rapamycin-sensitive, and so we reason that the rate of larval 
development provides an organismal model to study sensitivity to 
rapamycin (Oldham et al., 2000; Zhang et al., 2000). To understand 
how natural genetic variation modifies the response to rapamycin, we 
measured time to pupation of Drosophila embryos that developed on 
food containing either 2 nmol rapamycin or vehicle control (Section 4). 
We did so among 140 lines from the DGRP and two standard labora-
tory strains (W1118 and Canton-S) (Figure 1a, Table S1). Across all lines 
tested, the average developmental delay, measured as the pupation 
time difference between rapamycin and control, was 2.0 ± 1.6 days 
(SD), representing an average delay of 21.3%. We found wide variation 
in development delay across the DGRP with some lines showing insig-
nificant delay, and others where mean development was delayed up to 
7.1 days (69.1%) (Figure 1a). While pupation time on control food varied 
across the DGRP, it was not correlated with developmental delay on 
rapamycin (Spearman's ρ = −0.133, p = 0.115, Figure S1).
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To explore the degree to which rapamycin sensitivity is influ-
enced by dose, we sampled lines from the extremes of the pheno-
typic distribution to obtain four relatively resistant lines (mean delay 
of −0.058 ± 0.30 days (SD)), and two sensitive lines (mean delay 
of 6.4 ± 0.75 days (SD)). We measured their development time on 
rapamycin doses ranging from 2 to 1024 nmol. Both sensitive lines 
showed increasing delay beyond 2 nmol. However, the four resistant 
lines showed various responses to higher doses of rapamycin, with 
three of the four resistant lines delayed above 2 nmol, and one show-
ing no evidence of delay, even when treated at 1024 nmol (Wilcoxon 
rank sum test, p < 0.05, Figure 1b).

To test whether delayed development was associated with effects 
on larval size, we sampled four sensitive lines with a mean develop-
mental delay of 6.21 ± 0.63 days (SD), and two resistant lines with a 
mean developmental delay of −0.022 ± 0.05 days (SD). Measuring the 
size of larvae of these lines over the course of 3 days revealed a signifi-
cant effect of rapamycin on larval size (ANOVA, size × treatment × phe-
notype, F(1,1391.44) = 135.3, p = 6.6 × 10

−30), and on growth rates among 
the sensitive, but not the resistant lines (size × day × treatment × pheno-
type F(2,1391.44) = 25.0, p = 2.1 × 10

−11, Figure S2, Figure 1c, Section 4). 
Moreover, there was no effect of rapamycin on larval size at any day 
among the two resistant lines (F(1,511.08) = 0.97, p = 0.33, Figure S2).

2.2  |  Genetic variation for rapamycin sensitivity 
maps to biological pathways

To explore the potential association between genetic variation in 
the DGRP and the substantial variation in rapamycin sensitivity, we 

measured SNP heritability (H2
SNP), the proportion of variance ex-

plained by the genetic relatedness of the DGRP lines as estimated 
by the genotype data, using the gBLUP method (Rohde et al., 2020; 
Section 4). In the full dataset of 140 lines, H2

SNP = 0.80 (±0.35 SE), 
with large error in the estimate likely reflecting the modest power 
of 140 lines (Figure 2a). Bootstrap sampling of smaller numbers of 
lines indicated that approximately 130 lines was a sufficient number 
to estimate the H2

SNP observed in the complete data set, and sub-
samples below 130 lines showed wide variation in H2

SNP (Figure 2a). 
Given the relatively large variation in H2

SNP, we further tested the 
covariation between rapamycin sensitivity and the genetic related-
ness of the DGRP by permutation. Permuted heritability estimates 
were typically near zero, and H2

SNP exceeded the estimate from real 
data in only 41 of 1000 permutations (p = 0.041, Figure 2b).

To look for genetic markers that might explain variation in rapa-
mycin resistance we estimated effects of 1.09 × 106 markers using a 
linear mixed model (Section 4). We failed to identify single markers 
that reached genome-wide significance (p > 9 × 10−6, FDR >0.999, 
Figure 2c, Table S2). We also asked if rapamycin sensitivity is associ-
ated with the mitochondrial polymorphisms in the DGRP, including 
single marker analysis or associations with the three main mito-
chondrial genotypes among these 140 lines. However, no mtDNA 
markers associated with sensitivity to rapamycin (Supplementary 
Materials).

The failure of individual markers to explain much of the pheno-
typic variation indicated that sensitivity may be highly polygenic, 
involving many variants, each of weak effect. While a small effect 
of an individual variant may not lead to differences among lines, 
perhaps several such small effects could be shared among a gene, 

F I G U R E  1 Wide-ranging genetic variation in rapamycin sensitivity in the Drosophila Genetic Reference Panel (DGRP). (a) The mean 
developmental delay caused by rapamycin (mean pupation time on 2 nmol rapamycin - mean pupation time on control) for each of 140 
DGPR lines and two laboratory lines (Canton-S and w1118). Error bars are the pooled standard error of the mean (Section 4). The average 
number of larvae per condition was 77 (range = 3 to 216). (b) Mean pupation time of four lines that are resistant (red) and of two sensitive 
lines (blue) at doses of rapamycin ranging from 0 to 1024 nmol. (c) The size of larvae from a representative resistant line (Ral_535, mean delay 
=0.02 ± 0.40d), and a representative sensitive line (Ral_348, mean delay = 5.5 ± 0.61d) was monitored over the first 3 days of development on 
either control food (black), or food containing rapamycin (yellow). The size of 17–67 larva were measured each day. Across an additional five 
lines analyzed, both the size and the rate of size increase were significantly affected by rapamycin in sensitive lines, but not in resistant lines 
(ANOVA, p < 0.05, Figure S2).
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or among the genes in a pathway. If so, the collective variation in a 
pathway then could associate with phenotypic variation among lines 
(Edwards et al., 2016). This idea prompted us to use the covariance 
association test (CVAT) (Rohde et al., 2016) to ask whether markers 
that were aggregated at the gene-level associated with rapamycin 
sensitivity. The CVAT approach estimates the covariance between 
genome-wide genetic effects and genetic effects of a subset of 
markers, and CVAT can be used to test whether markers associated 
with a gene, or other genome feature, are effectively enriched for 
associated variants. When applied to the 1–4471 (mean = 596) mark-
ers within each of 14,125 genes, we found the set of markers within 
the gene DptA was weakly associated with rapamycin sensitivity at 
an FDR of <16% (p = 1 × 10−5, Table S3). We then extended this anal-
ysis to include markers within ±1 kb of the primary transcript of each 
gene, which incidentally included 830 additional genes that then had 
enough markers for this analysis. Variation at DptA ± 1 kb was less 
associated with sensitivity (p = 4 × 10−5, FDR <0.64), and this analysis 
did not reveal any additional genes (Table S3).

We then applied CVAT at the level of biological pathways, test-
ing variation in the genes in each of 127 Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways, and 4346 gene ontology 
(GO) terms. While no terms were significant at FDR = 5%, we found 
two KEGG pathways and 23 GO terms significant at FDR <0.20 

(Table  S3). Associated pathways include TGFβ and MAPK signal-
ing, hemocyte development, nurse cell apoptosis, and regulation of 
tracheal diameter. We note that KEGG pathways and GO terms are 
not mutually exclusive. In fact, the TGFβ signaling pathway as rep-
resented by both KEGG (dme04350) and GO (GO:0060391) were 
associated with rapamycin sensitivity (Table  S3). While the mTOR 
signaling pathway was not itself significant (p = 0.03, FDR = 0.528), 
the MAPK pathway is partially nested within the mTOR pathway. 
The null distribution of p-values is expected to be uniform. Using 
Q-Q analysis against the null distribution of P, both KEGG pathways 
and GO terms seem to associate more strongly with rapamycin sen-
sitivity when compared to associations of single genetic markers, or 
variation in individual genes (Figure 2d).

2.3  |  Rapamycin reshapes the metabolome of 
sensitive larvae

To gain further insight into the effect of rapamycin, we analyzed 
a panel of 154 aqueous metabolites in larvae of six resistant lines, 
with mean developmental delays ranging from −0.41 to 0.02 days, 
and seven sensitive lines, with mean delays ranging from 4.76 to 
7.09 days, each of which was treated with either rapamycin or control 

F I G U R E  2 Genetic variation in rapamycin sensitivity maps to biological pathways. (a) SNP heritability (H2
SNP) estimated by gBLUP among 

the 140 DGRP lines was 0.802 ± 0.35(SE). H2
SNP estimates in each of 200 bootstrap subsamples of n lines. (b) H2

SNP estimated in each of 
1000 permutations of the phenotype are highly zero-inflated and give an empirical p = 0.041 for the real estimate (arrow). (c) There was 
no single marker associated with rapamycin sensitivity at the genome-wide threshold (CVAT, FDR >0.99 for all markers). Manhattan plot 
showing the –log10 p value of 10,854 genetic markers (p ≤ 0.01), across each chromosome arm. The remaining 1.8 × 106 markers (p > 0.01) are 
not plotted. (d) Genetic covariance can be partly attributed to genetic markers aggregated by Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways or gene ontology (GO) terms. Q-Q plots for the –log10 p values for individual markers, and the empirical p-values among 
the CVAT analyses of genome features representing genes, KEGG pathways and GO terms.
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food for 2 days after egg laying. Principal components analysis (PCA) 
detected an effect of rapamycin on the metabolome among the sen-
sitive genotypes along PC1, as well as a distinction between resist-
ant and sensitive lines along PC6 (Figure 3a). We failed to identify 
any individual metabolites associated with the resistance phenotype 
alone (ANOVA, FDR >5%). However, given the response of sensitive 
lines to rapamycin (Figure 3a), we looked specifically for metabolites 
that have treatment effects within resistant or sensitive lines. We 
fit a mixed model with a fixed treatment effect to the metabolome 
data from resistant or sensitive larvae. The sign of treatment effects 
among resistant and sensitive lines was highly correlated (ρ = 0.48, 
p = 4.0 × 10−10, Figure 3b). However, the magnitude and significance 
of these effects differed markedly between resistant and sensitive 
lines. Of the 154 metabolites, four were significantly reduced in the 
rapamycin condition in both resistant and sensitive lines. However, 
in sensitive lines, an additional 24 were less abundant and 24 more 
abundant (FDR <5%, Figure  3b). These results indicate that rapa-
mycin affects metabolome profiles, primarily within sensitive lines, 
where perhaps the same response is attenuated among resistant 
lines.

We then sought to identify biochemical pathways whose ac-
tivity could explain the effects of rapamycin treatment among the 
resistant or sensitive lines. With 154 metabolites, we were under-
powered to perform standard enrichment analysis on the majority 
of biological pathways, and so we made use of a network enrich-
ment analysis that analyzes nodes in biological networks, looking 
for those that connect more closely to a set of metabolites than 
expected by chance (Picart-Armada et al., 2018). The metabolites af-
fected by rapamycin in both resistant and sensitive larvae—cytosine, 
guanosine, inosine, and histidine—enrich nucleotide metabolism 
(dme01232, FDR = 0.002), protein export (dme03060, FDR = 0.017), 
and purine metabolism (dme00230, FDR = 0.026). When we analyzed 

the pathways enriched by the 52 metabolites that were affected by 
rapamycin in sensitive lines, we identified dme00970—aminoacyl-
tRNA biosynthesis (FDR = 0.003).

2.4  |  Rapamycin causes a starvation-like 
metabolome in sensitive larvae

Two related mechanisms that influence larval sensitivity to rapa-
mycin are autophagy and starvation (Jouandin et al., 2022; Scott 
et al., 2004). In sensitive larvae on rapamycin, we saw increased 
abundance of metabolites enriching aminoacyl-tRNA synthe-
sis, and aminoacyl-tRNA synthases regulate autophagy in larvae 
(Arsham & Neufeld, 2009). Starvation occurs in low-nutrient con-
ditions, where mTOR stimulates autophagy to recycle macromole-
cules back onto the nutrient pool (Scott et al., 2004). We therefore 
asked if rapamycin treatment has a similar effect to that of food 
deprivation on the larval metabolome, and if the response in 
rapamycin-sensitive larvae is like starvation. Jouandin et al. (2022) 
measured the aqueous metabolome of larvae of the Drosophila line 
W1118 that were deprived of food for up to 8 h (Section 4). Their 
data included measurement of 84 of the 154 metabolites that we 
measured here. The first principal component of these 84 metabo-
lites in their data was highly associated with food deprivation time, 
such that longer starvation led to larger values of PC1, which for 
simplicity, we refer to as PCstarvation (Figure  4a). When we used 
the loadings of the 84 metabolites in PCstarvation to project the 
metabolome data from our study, we find not only that rapamy-
cin treatment led to larger PCstarvation values (ANOVA, treatment 
F(1,27) = 40.44, p = 1.4 × 10

−6), but also that there was a highly sig-
nificant and consistent displacement of the metabolome along the 
PCstarvation axis in rapamycin-sensitive lines (Figure  4b, ANOVA, 

F I G U R E  3 Rapamycin primarily affects the metabolome of sensitive lines. (a) Plot of PC6 over PC1 of 154 metabolites in larvae of six 
resistant (R) and seven sensitive (S) lines on food treated with either rapamycin (rapa) or control (−), depicts the distinction between R 
and S along PC6, and the effect of rapamycin particularly on the metabolome of the S lines on PC1. Ellipses are 60% confidence intervals. 
(b) The effect of rapamycin (β) on metabolites in resistant and sensitive lines. Metabolites with effects at FDR ≤5% in sensitive lines 
(red) or both sensitive and resistant lines (purple). No metabolites were affected in resistant lines that were not also affected in sensitive 
lines. Metabolites not affected are in grey. The correlation between β in resistant and sensitive lines is significant (Spearman's ρ = 0.48, 
p = 4.0 × 10−10).

(a) (b)
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treatment × phenotype F(1,27) = 21.06, p = 9.18 × 10−5). Thus, the 
metabolome of rapamycin-sensitive larvae, when treated with ra-
pamycin, resembles that of starved larva.

mTOR signals growth and development in response to nutrient 
status. Thus, we asked if nutrient deprivation would modify sensi-
tivity to rapamycin. We measured the effect of rapamycin on de-
velopment of seven resistant lines and six sensitive lines, on food 
containing 75% or 50% of the yeast and sugar of the standard 

(100%) food. While food dilution delayed development by ~1 day 
at 75%, and ~2d at 50% (p < 2 × 10−16), and rapamycin significantly 
delayed the development of sensitive lines at all tested food levels 
(p = 3.2 × 10−12), there was no indication that food dilution modified 
the sensitivity to rapamycin of either the sensitive of resistant gen-
otypes (food condition × rapamycin treatment; p > 0.27; Figure 4c). 
To test the prediction that development in rapamycin-sensitive 
genotypes is inherently more sensitive to nutrient deprivation, we 

F I G U R E  4 Rapamycin induces a starvation-like metabolome in sensitive larvae, and sensitivity is unaffected by nutrient deprivation. 
(a) The first principal component (PCstarvation) of 84 metabolites in w

1118 larvae exposed to PBS-soaked paper for 0–8 h (starvation time, 
Jouandin et al., 2022). The red line is the fit of an exponential model (r2 = 0.91, p = 9.68 × 10−6, Section 4). (b) The metabolome data from 
the same 84 metabolites in larva of sensitive or resistant lines on control (cont) or rapamycin (rapa) food was projected onto PCstarvation. 
Rapamycin had a significant effect on PCstarvation that was specific to the sensitive larva (p = 8.0 × 10−5). (c) The mean pupation times 
of five sensitive lines and seven resistant lines on control food (100%) or food with the yeast and sugar components diluted to 75% or 
50%, were measured under rapamycin and control treatments. Food dilution slowed development (β75 = 1.09, p = 2.2 × 10

−15; β50 = 3.02, 
p < 2 × 10−16), as did rapamycin treatment among the sensitive lines (p < 2 × 10−16). However, food dilution did not affect rapamycin sensitivity 
(treatment × food, and treatment × food × phenotype, p < 0.13).
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compared the developmental delay elicited by food dilution in sensi-
tive and resistant genotypes in the absence of rapamycin and found 
no difference in their response (p > 0.46; Figure 4c).

3  |  DISCUSSION

Extensive laboratory studies have identified mTOR as a driver or 
modulator of pathways that are intimately connected to life his-
tory and longevity. However, efforts to translate discoveries from 
laboratory models into medical interventions will inevitably need 
to address the possibility that the efficacy of these treatments 
might depend on genetic background. Here we exploit the pace of 
early Drosophila development to examine the influence of genetic 
variation on the effect of rapamycin. While not directly assessing 
longevity, focusing on larval development as an indicator of rapa-
mycin activity provided a means to rapidly screen many conditions 
(Lithgow & Walker, 2002; Scott et al., 2004).

Until now, much of the published work dissecting rapamycin ac-
tion on lifespan in adult flies has involved the outbred strain Dahomey 
(Bjedov et al., 2010; Schinaman et al., 2019). Using six lines from the 
DGRP, Rohde et  al.  (2021) demonstrated genetic variation for the 
effect of rapamycin on adult longevity, suggesting that genetic varia-
tion in part determines sensitivity to this longevity intervention. We 
show that, at a dose sufficient to delay the development of most 
Drosophila lines, there is a continuum of responses manifesting as 
developmental delays of −4.5%–79% of the control developmental 
period. We also show that this range of delay over the same dose 
is only one axis of variation. Among lines resistant to the screening 
dose, there is yet more variation in the dose–response, including one 
of four lines that showed no delay on media containing up to 512× 
the screening dose, and various degrees of dose–response in the 
other lines. The developmental delay that we observe was accom-
panied by slower growth in larval size, consistent with studies that 
use either pharmacological or genetic manipulation of mTOR activity 
(Layalle et al., 2008; Oldham et al., 2000; Scott et al., 2004; Zhang 
et al., 2000). Together our results indicate that Drosophila popula-
tions maintain substantial natural genetic variation for sensitivity to 
rapamycin.

3.1  |  How are resistant and sensitive larvae 
different?

We investigated the variation in rapamycin sensitivity in two ways; 
first, by looking for genetic variation associated with resistance 
measured as a continuous trait among 140 DGRP lines, and second, 
by comparing the metabolome of groups of lines at the extremes 
of the distribution of resistance and sensitivity. This latter approach 
has been used successfully to dissect the response of adult flies 
to hydrogen peroxide, where it revealed remarkable convergence 
on glycogen metabolism in sensitive genotypes, in contrast to the 
relative insensitivity of resistant genotypes (Harrison et al., 2020). 

We find a similar pattern in the response to rapamycin as well. In 
contrast to the effect of rapamycin on the metabolome of resistant 
larva, the metabolome of sensitive larvae shows a dramatic response 
with respect to many metabolites. This analysis considered resistant 
and sensitive lines as binary classes and so was underpowered to de-
tect variation within the two classes of resistant and sensitive lines.

In sensitive larvae under rapamycin, we see effects on amino 
acids, including glutamine, serine, histidine, and glutamic acid, and 
the fatty acid-related metabolites phosphorylcholine, acetylcarni-
tine, and carnitine. These metabolites have peripheral roles in the 
activity of the TCA cycle, which harvests energy from fatty acids in 
response to mTOR inhibition (Jouandin et al., 2022). We also show 
that rapamycin treatment induces a starvation-like state in the larval 
metabolome of sensitive larvae (Figure  4), a response that is con-
sistent with transcriptome analysis of mammalian cells treated with 
rapamycin (Peng et al., 2002). The metabolites affected by rapamy-
cin in sensitive larvae are enriched for the tRNA biosynthesis (tRNA 
charging) pathway. tRNA charging is the attachment of amino acids 
to their cognate tRNAs. There is compelling evidence for the involve-
ment of tRNAs in the regulation of larval growth by mTOR (Rideout 
et al., 2012; Rojas-Benitez et al., 2015), and so this mechanism may 
explain the sensitivity of lines in this study. Alternatively, the en-
richment of tRNA charging may simply reflect the numerous amino 
acids whose abundances are affected by rapamycin. This result is 
consistent with a shift from protein synthesis and toward autophagy 
under mTOR inhibition (Scott et al., 2004).

The metabolomic response of sensitive larvae to rapamycin indi-
cates that they either perceive nutrient limitation via reduced mTOR 
signaling or are under actual nutrient limitation by some undetermined 
mechanism. Nutrient supply and the perception of its status is critical 
for growth and the developmental transitions that determine the time 
it takes to progress from egg to pupa (Texada et  al.,  2020). We hy-
pothesized that, by experimentally limiting nutrients, larvae that were 
otherwise insensitive would become sensitive due to reduced growth 
signaling. Instead, we found that limiting nutrients to levels sufficient to 
delay development was not sufficient to alter the sensitivity of larvae 
to rapamycin, neither making resistant larvae sensitive, nor enhancing 
the sensitivity of sensitive larvae (Figure 4c). The independence of the 
developmental delay induced by rapamycin and that from nutrient lim-
itation suggests that either the starvation-like effect of rapamycin on 
the metabolome is independent or downstream of the developmental 
delay or that food dilution acts independently on development.

The ultimate cause of variation in rapamycin sensitivity that we 
describe is genetic. Relatedness among the DGPR, as reflected in 
their similarity over ~104 genetic markers, accounts for approxi-
mately 80% of the variance in the developmental delay among the 
lines (Figure 2). Such a high H2

SNP suggests rapamycin sensitivity is 
highly predicted by the genome-wide similarity among lines. While 
this may be the case, we also show that this estimate is sensitive to 
the number of lines analyzed and, while significantly non-zero, is only 
weakly significant based on permutation tests (p = 0.041, Figure 2). 
While we were not able to find individual genetic markers associ-
ated with rapamycin sensitivity, markers grouped at the gene and 
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pathway levels identified several putative modifiers of rapamycin 
sensitivity. Our observation of stronger associations when genetic 
variation was aggregated to the gene or pathway levels (Figure 2d) 
is similar to results from previous studies (Edwards et al., 2016). At a 
marginal FDR threshold of <16%, variation in DptA, which encodes 
an antimicrobial peptide (AMP), associates with rapamycin sensitiv-
ity. In this study, larval growth was measured on media containing 
the fungicide tegosept and the antibiotics kanamycin and tetracy-
cline (Section 4), conditions that substantially reduce microbial load, 
so the association between rapamycin sensitivity and DptA is not 
likely due to infection. Independent of infection, DptA, along with 
other AMPs, is induced by FOXO in response to nutrient stress, or 
in response to mTOR inhibition by rapamycin, and their induction 
is required for timely larval development (Kamareddine et al., 2018; 
Varma et al., 2014). Therefore, the genetic association we find pro-
vides suggestive evidence for a causal role for DptA in the growth 
effect of rapamycin.

At the pathway level, genetic variation in rapamycin sensitiv-
ity associates with developmental processes, including embryonic 
hindgut morphogenesis, foregut morphogenesis, and TGFβ signaling 
(Table S3). In adult flies, rapamycin affects the activity of intestinal 
stem cells, and the intestine is a target for lifespan extending ef-
fects of rapamycin (Schinaman et al., 2019). Thus, genetic variation 
in gut development or function may explain some of the variation in 
sensitivity to rapamycin that we report. In larvae, Dpp, a fly homo-
log of the growth-regulatory ligand TGFβ, modulates mTOR activity 
(Denton et al., 2019). While not significant genome-wide (p = 10−4, 
FDR = 61%), Dpp is the second-most associated gene in our analysis. 
The association between rapamycin sensitivity and TGFβ signaling 
lends support to a non-canonical model of rapamycin action that has 
emerged from other studies. In the canonical mammalian models, 
rapamycin binds to the FK506-binding protein FKBP12, and this 
complex binds mTOR, preventing its function (Liu & Sabatini, 2020). 
The Drosophila homolog of FKBP12 is part of an eight gene fam-
ily, Fkbp12 being the closest homolog to human FKBP12 (Ghartey-
Kwansah et  al.,  2018). While the interaction with rapamycin, 
FKBP12, and mTOR has not been demonstrated in flies, there is 
evidence that rapamycin can interfere with a direct interaction 
between FKBP12 and the Dpp receptor (Chen et  al.,  1997; Wang 
et  al.,  1996). Together with the genetic association we find, these 
results suggest that rapamycin may have direct cellular targets other 
than FKBP12-mTOR that are relevant for growth in Drosophila (Chen 
et al., 1997; Miyakawa et al., 2018). We did not find any association 
with variants in the Tor gene, and only weak association with genetic 
variation in the mTOR pathway (Table S3). However, the association 
with MAPK signaling indicates an axis of variation that intersects 
with the mTOR pathway.

Given that rapamycin has well-defined targets, it is somewhat 
surprising that the heritable genetic signal appears to be diffused 
over many loci, failing to associate strongly with any of the many 
thousands of markers in the DGRP (Huang et al., 2014). This could 
be due either to associations with alleles that did not meet our minor 
allele frequency threshold, to a lack of segregating variants in mTOR 

pathway-associated genes, or to latent genetic variation that at the 
time of the last public data release (Freeze 2.0) was either undeter-
mined or remained heterozygous (Huang et al., 2014). The mapping 
we describe only incorporates markers that were called homozygous 
in Freeze 2.0, and so would not consider loci that have since fixed 
and that may associate with sensitivity.

Beyond the implications of demonstrating a high degree of ge-
netic variation for the response to a longevity intervention, this work 
points toward a strategy to detect, predict, and explain variation in 
the response to rapamycin in Drosophila and other species. While 
the genetic signal captured here is either highly polygenic, or unre-
solved, we show here that the metabolomic signal is strong and con-
sistent. Future efforts can and should investigate the utility of the 
metabolome as a biomarker of the response to rapamycin or other 
pharmacological healthspan interventions.

3.2  |  Limitations of the study

The current study measures developmental delay at a dose of rapa-
mycin that reveals substantial variation across genotypes. We also 
show a dramatic dose–response among lines, so perhaps phenotypic 
variation in the response to an alternative dose might associate more 
strongly with underlying genetic variation. We also focus entirely on 
larvae and so how the variation in the larval response relates to the 
variation described in the effect of rapamycin on adult fly lifespan 
is an open question (Bjedov et al., 2010; Rohde et al., 2021). The ef-
fect of rapamycin on adult Drosophila lifespan is also sex-dependent 
(Bjedov et al., 2010). Because determining the sex of larvae is labori-
ous, rapamycin sensitivity was measured in mixed sex populations 
and therefore some portion of the phenotype may be due to sex bias 
among the larvae surveyed per line per condition.

4  |  METHODS

4.1  |  Flies

The Canton-S stock and lines from the DGRP were purchased 
from the Bloomington Drosophila Stock Center (Indiana University, 
Bloomington, IN). W1118 was kindly gifted by Leo Pallanck, 
University of Washington. For routine propagation, flies were cul-
tured on media containing 5.5% dextrose, 3% sucrose, 6% corn meal, 
2.5% yeast, 0.9% agar, 0.9% EtOH, 0.3% tegosept, and 0.3% propi-
onic acid. Drosophila populations were maintained at ~200 eggs per 
bottles, with ~50 mL media, and cultured under a 12:12 h light: dark 
cycle at 25°C with 40%–60% humidity.

4.2  |  Media preparation

To increase batch-to-batch consistency for the developmental tim-
ing screen and minimize bacterial growth during the assay, we used 
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    |  9 of 13HARRISON et al.

a modified media recipe. Experimental media consisted of 6% dex-
trose, 3% sucrose, 6% corn meal, 2.5% yeast, 0.9% agar, 1.2% EtOH, 
0.3% tegosept, 0.3% propionic acid, 50 μg/mL kanamycin, and 20 μg/
mL tetracycline. To make experimental media, 120 g corn meal, 50 g 
yeast, and 18 g agar were gently boiled in 2 L diH2O on a heated stir-
rer, and then autoclaved at 121°C for 45 min. Media were returned 
to stirrer, allowed to cool to 60°C, and then 220 mL of 50% dextrose, 
120 mL 50% sucrose, 6 mL of propionic acid, and 6 g tegosept dis-
solved in 24 mL ethanol, were added. Finally, 50 μg/mL kanamycin 
and 20 μg/mL tetracycline were added. A peristaltic pump was used 
to dispense 10 mL of media into vials which were then stored at 4°C 
and used within 2 weeks of preparation. For diluted yeast and sugar 
food, the above protocol was followed, but the amount of yeast, 
glucose, and sucrose was reduced to 75% or 50% of the original 
amounts while other ingredients remained the same.

Rapamycin treatment was administered as an overlay to food in 
vials. To prepare rapamycin and control media, either a 1 mM rapa-
mycin stock was made by dissolving rapamycin in EtOH at room 
temperature and then kept at −20°C; or, for the dose–response ex-
periments, 1 mL of 20.5 mM rapamycin stock was made by dissolv-
ing 18.7 mg to 1.0 mL in EtOH by vortex mixing in a 1.5 mL tube. 
Rapamycin stocks were diluted to the appropriate concentration 
with EtOH, and control solution was just EtOH. For all treatment 
and control vials, 50 μL of solution was overlaid onto vials, and vials 
were covered and left overnight on the benchtop to allow food sur-
face to dry.

4.3  |  Development time assay

To collect embryos for development time analysis, 200–300 flies 
from each line were allowed to lay eggs on grape juice agar plates in 
egg chambers, with a small quantity of yeast paste and diluted apple 
cider vinegar on each plate. Fly populations were maintained in egg 
chambers for 2 to 3d and plates were replaced each day. On the day 
before embryo collection, plates were replaced in the evening and 
embryos were collected the next morning to randomly numbered 
experimental vials (40 embryos per vial) using platinum wire picks 
that were flame-sterilized between vials, with three to four vials per 
treatment condition. Vials were kept in trays at 25°C, 12/12 h light 
cycle and 50%–60%RH. The DGRP lines were screened in batches 
of ~10–30 lines each. To estimate batch-to-batch variation, two 
DGRP lines (Ral45 and Ral321) and two laboratory-adapted lines 
(W1118 and Canton-s) were tested in each batch. To verify the geno-
type of experimental flies, adults from egg chambers were stored 
at −20°C until PCR genotyping. Development times were recorded 
when new pupae were counted and removed from each vial, once 
or twice per day, until all vials ceased to produce pupae for two con-
secutive days.

Mean pupation time for each line treated with rapamycin or vehi-
cle was estimated by pooling all pupae across replicates (mean = 77, 
range = 3–216 per genotype and condition). To quantify the devel-
opmental delay due to rapamycin, the average pupation time for the 

control condition was subtracted from the average pupation time 
on rapamycin. To measure the error in the estimated developmental 
delay for each line, we calculated the pooled standard deviation (s) 
to then get the pooled standard error (SE).

Where nr and nc are the numbers of pupae in rapamycin and 
control vials respectively and sr and sc are the respective standard 
deviations of development times in each condition. Pooled standard 
error is then:

4.4  |  Larval size

To measure effects of rapamycin on larval size, we raised larvae 
from embryos on food with and without rapamycin and collected 
17–67 (mean = 39) larvae from each genotype and condition on each 
of Days 1, 2, and 3. Larvae were collected into phosphate-buffered 
saline (PBS) on microscope slides, heat-killed on a hot block at 70°C 
for ~1 min and imaged under a microscope. The size (area, mm2) of 
each larva was measured by a single blinded researcher who traced 
the outline of larvae, calculated the area in pixels using ImageJ, and 
converted to mm2 (Schneider et  al.,  2012). To test the hypothesis 
that sensitivity phenotype influences the effect of rapamycin on size 
and/or growth rate, we used a linear mixed model that included a 
random effect of line (1|line), and two-way and three-way interac-
tion terms (e.g., βday×T×P) between effects of rapamycin treatment 
(βT = rapamycin vs. control), larval area and growth rate (area by βday), 
and sensitivity phenotype of the sampled genotypes (βP = resistant 
vs. sensitive).

4.5  |  Genetic association

The developmental delay phenotype for each line was prepared 
for association testing by normalizing and correcting for batch ef-
fects across the DGRP screen. This was done by first adding one 
(to remove negative values), and then applying the Box-Cox trans-
formation. Transformed data were then centered within each ex-
perimental batch by subtracting the mean values of the four lines 
included in every batch (Ral45, Ral321, W1118, and Canton-S). The 
centered data were then scaled within each batch by dividing by the 
batchwise standard deviation.

SNP heritability (H2
SNP) was estimated using the proportion of 

variance in rapamycin sensitivity (y) that was explained by the joint 
effects of all markers, the genomic best linear unbiased predictions 
(gBLUPs). The gBLUPs were estimated as a random effects (v) of the 
genomic relationship matrix (GRM, Z), in a mixed model that included 
fixed effects (β) of Wolbachia status and the genotype of inversions 

pooled s =

√

(

nr − 1
)

s2
r
+
(

nc − 1
)

s2
c

nr − nc − 2

pooled SE =

√

√

√

√
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√

1
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+

1
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In.2 L.t, In.2R.NS, In.3R.P, In.3R.K, and In.3R.Mo in a design matrix 
(X), and Gaussian error (ε) using the qgg package (Rohde et al., 2020).

The GRM was built using the grm function in the qgg package, 
on mean-centered and scaled genotypes of 6.5 × 104 variants among 
the 140 lines in the study (MAF ≥5%, genotyping rate ≥95%, and 
LD-pruned to r2 ≤ 0.8 in 200 kb windows, sliding 5 kb, with PLINK 1.9 
(Chang et al., 2015)).

Genetic associations with rapamycin sensitivity were conducted 
in two ways, by single marker analysis, and by a set-based approach 
using the covariance association test (CVAT) (Rohde et  al.,  2016) 
to look for gene-  and pathway-level associations. To get single 
marker effects, the covariance between each of 1.09 × 106 genetic 
markers (MAF >5%, genotyping rate >80%) and the gBLUPs was 
tested using the lma function in the qgg package. Genetic mark-
ers included 1.01 × 106 snps, 4.3 × 104 deletions, 3.4 × 104 indels, 
and 937 multiple nucleotide polymorphisms. The resulting p-values 
were adjusted for multiple testing using the FDR approach (Storey & 
Tibshirani, 2003). To test for gene- and pathway-level associations 
we used the CVAT method. At the gene level, each genome feature 
that we tested included either all markers located within the primary 
transcript of a gene (based on flybase 5.57 annotations, flyba​se.​org), 
or, in a separate analysis, the features also included markers ±1 kb 
from the primary transcript. At the pathway level, gene-level fea-
tures were further combined into GO terms and KEGG pathways. 
We removed pathways with only a single gene or with fewer than 
200 total markers, and then one pathway at a time, all markers in all 
genes were fit simultaneously (Rohde et al., 2016). The test statistic 
in CVAT has an undefined probability distribution and therefore its 
significance was evaluated by 1 × 106 permutations within the gsea 
function, to calculate an empirical p-value. Empirical p-values were 
then adjusted by FDR.

4.6  |  Metabolomics sampling

For larval metabolomics, embryos from six resistant and seven sen-
sitive lines were harvested from egg chambers and added to repli-
cate rapamycin or control vials as in the developmental screen. For 
larvae sampling, the egg laying window for flies to deposit embryos 
on egg chamber plates was reduced to 4–6 h and each line and treat-
ment combination was sampled in three replicate vials. After 2 days 
in treated vials, 2–3 mL of 1X PBS was added to vials. After 2–4 min, 
larvae suspended in PBS were pooled between replicates into a petri 
plate. For each condition, up to 50 larvae were then transferred to 
1.5 mL microfuge tubes. Residual PBS was aspirated, and larvae were 
flash frozen in liquid nitrogen and stored at −80°C until processed 
for metabolomics. All steps of this experiment were repeated 1 day 
later, and each replicated experiment is referred to as a batch.

Aqueous metabolites for targeted LC–MS profiling of 54 fly lar-
vae samples were extracted using a protein precipitation method 
similar to the one described elsewhere (Meador et  al.,  2020). 

Samples were first homogenized in 200 μL purified deionized water 
at 4°C, and then 800 μL of cold methanol containing 124 μM [6-13C] 
glucose and 25.9 μM [2-13C] glutamate was added (13C labeled inter-
nal standards were added to the samples in order to monitor sam-
ple prep). Afterwards, samples were vortexed, stored for 30 min at 
−20°C, sonicated in an ice bath for 10 min, centrifuged for 15 min at 
18,000×g and 4°C, and then 600 μL of supernatant was collected 
from each sample. Lastly, recovered supernatants were dried on a 
SpeedVac at 30°C and reconstituted in 0.5 mL of LC-matching sol-
vent containing 17.8 μM [2-13C] tyrosine and 39.2 μM [3-13C] lactate 
(13C labeled internal standards were added to the reconstituting sol-
vent in order to monitor LC–MS performance). Samples were trans-
ferred into LC vials and placed into a 4°C auto-sampler for LC–MS 
analysis.

4.7  |  LC–MS assay

Targeted LC–MS metabolite analysis was performed on a duplex-
LC–MS system composed of two Shimadzu UPLC pumps, CTC 
Analytics PAL HTC-xt temperature-controlled auto-sampler and 
AB Sciex 6500+ Triple Quadrupole MS equipped with ESI ioniza-
tion source (Meador et al., 2020). UPLC pumps were connected to 
the auto-sampler in parallel and were able to perform two chroma-
tographic separations independently from each other. Each sam-
ple was injected twice on two identical analytical columns (Waters 
XBridge BEH Amide XP) performing separations in hydrophilic in-
teraction liquid chromatography mode. While one column was per-
forming separation and MS data acquisition in ESI+ ionization mode, 
the other column was being equilibrated prior to sample injection, 
chromatographic separation and MS data acquisition in ESI- mode. 
Each chromatographic separation was 18 min (total analysis time per 
sample was 36 min). MS data acquisition was performed in multiple-
reaction-monitoring mode. The LC–MS system was controlled using 
AB Sciex Analyst 1.6.3 software. Measured MS peaks were inte-
grated using AB Sciex MultiQuant 3.0.3 software. In every sample 
the LC–MS assay detected 158 metabolites, four of which were 
spiked isotopic reference internal standards. In addition to the study 
samples, two sets of quality control (QC) samples were used to mon-
itor the assay performance as well as data reproducibility. One QC 
[QC(I)] consisted of a pooled human serum sample used to monitor 
system performance and the other QC [QC(S)] consisted of pooled 
study samples and was used to monitor data reproducibility. Each 
QC sample was injected per every 10 study samples. The data were 
highly reproducible, with a median CV of 5.1%.

4.8  |  Metabolomic data analysis

LC–MS peak intensity data from 154 metabolites were loge trans-
formed and then the data within each sample were mean-centered 
and scaled to SD = 1. Potential effects of two metabolite extrac-
tion batches were removed using the ComBat function in the sva 

y = X� + Z� + �
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package (Johnson et  al.,  2007). Principal components were com-
puted on scaled metabolite values. Individual metabolites whose 
abundance might differ between sensitive and resistant lines were 
tested by Type III ANOVA with a treatment by phenotype interac-
tion term (�T×P), including line as a random effect:

p-values for each term were FDR-corrected for multiple com-
parison. We tested individual metabolites for effects of rapamycin 
within samples from each phenotype by fitting a mixed model with 
treatment as a fixed effect, and a random effect of line, with FDR 
correction.

Pathway enrichment of metabolites with significant treatment 
effects was performed with the FELLA package (Picart-Armada 
et al., 2018). A network graph of 4173 metabolites, 5724 reactions, 770 
enzymes, 176 modules, and 138 pathways, was constructed from the 
KEGG database release 109.0. Of 154 metabolites measured in this 
study, 133 were mapped to a KEGG identifier. Of these, 49 had treatment 
effects in sensitive larvae and four had treatment effects in resistant 
larvae, and both sets were tested for enrichment of the KEGG network 
using the network diffusion method (Picart-Armada et al., 2018). The 
significance of enrichment was assessed by comparison to 105 permu-
tations within the 133 measured compounds. Empirical p-values were 
adjusted for multiple testing using the FDR approach.

To represent the metabolomic effect of starvation in a single 
vector, metabolomic data from five replicates of 25 to 38 whole 
W1118 larvae, at 0, 2, 4, 6, or 8 h on PBS-soaked paper, were pro-
vided by Jouandin et al.  (2022). We removed metabolites with >1 
missing value and imputed the remaining 10 metabolites that had 
only one missing value using 10-nearest neighbor mean imputation. 
We normalized the data of Jouandin et al. (2022) by mean-centering 
and scaling by sample. Names of each metabolite in the two data-
sets were manually matched. Of the 84 intersecting metabolites, 
nine metabolites had two complementary measurements from both 
positive and negative ion LC/MS modes in the Jouandin et al data. 
To estimate the levels of these metabolites, we scaled the data by 
metabolite and took the mean of each pair of ions for each sample. 
We then performed PCA on the data from Jouandin et al. and, used 
non-linear least squares in the stats R package to fit an intercept 
(a = 20.53), and two shape parameters (b = 2.77 and c = 10.01) in the 
model shown below, finding that PCstarvation had a strong non-linear 
relationship with starvation time (time, r2 = 0.91, p = 1.3 × 10−13):

We used loadings of the 84 metabolites on PCstarvation to assess 
the metabolome of rapamycin-treated larvae compared to control 
larvae in our study. The interaction between rapamycin treatment 
and the sensitivity of the larvae on PCstarvation was assessed with a 
mixed model.
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